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Fluctuations of jamming coverage upon random sequential adsorption on homogeneous
and heterogeneous media

Ernesto S. Loscar, Rodolfo A. Borzi, and Ezequiel V. Albano
Instituto de Investigaciones Fisicoquı´micas Teo´ricas y Aplicadas (INIFTA), UNLP, CONICET, Casilla de Correo, 16 Sucursal 4, (190

La Plata, Argentina
~Received 18 June 2003; published 15 October 2003!

The fluctuations of the jamming coverage upon random sequential adsorption~RSA! are studied using both
analytical and numerical techniques. Our main result shows that these fluctuations~characterized bysuJ

) decay
with the lattice size according to the power lawsuJ

}L21/n. The exponentn depends on the dimensionalityD
of the substrate and the fractal dimension of the set where the RSA process actually takes place (df) according
to n52/(2D2df). This theoretical result is confirmed by means of extensive numerical simulations applied to
the RSA of dimers on homogeneous and stochastic fractal substrates. Furthermore, our predictions are in
excellent agreement with different previous numerical results. It is also shown that, studying correlated sto-
chastic processes, one can define various fluctuating quantities designed to capture either the underlying
physics of individual processes or that of the whole system. So, subtle differences in the definitions may lead
to dramatically different physical interpretations of the results. Here, this statement is demonstrated for the case
of RSA of dimers on binary alloys.

DOI: 10.1103/PhysRevE.68.041106 PACS number~s!: 05.40.2a, 02.50.2r, 64.60.Cn, 05.70.Fh
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I. INTRODUCTION

Physical and chemical properties of adsorbed monola
are being studied with increasing interest because their
derstanding is essential for the rationalization of many p
nomena and processes occurring on surfaces and interf
such as adsorption, desorption, catalysis, corrosion, wet
adhesion, diffusion, etc. The equilibrium behavior of su
overlayers can be described by a Gibbs measure pa
etrized by the coverageu and the temperatureT. Within this
context, the critical behavior of adsorbed films has ext
sively been studied@1–3#. On the other hand, numerou
physical processes can be modeled as the sequential,
versible filling of a surface by atoms or molecules. So
examples are the reaction at specific sites on a poly
chain, adsorption onto surfaces, reaction between group
adjacent surface sites, etc.@4–6#.

Considering the irreversible deposition of particles on
surface, one has two characteristic time scales: the time
tween depositions and the diffusion time of the particles
the surface. For very strong interaction between particles
the substrate~chemical adsorption!, diffusion becomes irrel-
evant and the venerated random sequential adsorption~RSA!
model provides an excellent description of the underly
processes~for a review on RSA models, see, e.g., Ref.@6#!.
Under these conditions the system evolves rapidly tow
far-from-equilibrium conditions and the dynamics becom
essentially dominated by geometrical exclusion effects
tween particles. These kinds of effects have been observe
numerous experiments@7#.

When RSA involves adsorption on single sites, the cas
termed ‘‘monomer filling.’’ Also, processes involving adja
cent pairs of sites are referred as ‘‘dimer filling,’’ while ad
sorption on larger ensembles of sites corresponds to ‘‘ani
filling’’ @6#. A quantity of central interest for the understan
ing of RSA processes is the asymptotic value of the fract
1063-651X/2003/68~4!/041106~9!/$20.00 68 0411
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u of the total surface occupied by adsorbed objects, whic
called the jamming coverageuJ5u(t→`). Within this con-
text, the RSA of needles~or linear segments! on homoge-
neous, two-dimensional samples, has very recently attra
considerable interest@8,9#. Particular attention has bee
drawn to the interplay between jamming and percolat
@8–10#. Of course, the percolation problem is a topic of en
mous interest by itself, due to their applications not only
statistical physics but also in many other areas such as
study of disordered media, fluids in porous materials, s
tems of biological and ecological interest, etc.@11–13#.
Therefore, a great progress in the field of the statistical ph
ics of far-from-equilibrium processes could be achieved
establishing links between RSA and percolation@8–10#.

Percolation is essentially a geometrical critical pheno
ena. The percolation transition is related to the probability
occurrence of an infinite connectivity between randomly d
posited objects, as a function of the fractionp of the sub-
strate occupied by the objects@14#. At the critical pointpc ,
the percolation cluster ind dimensions is a random fractal o
dimensionDF5d2b/n, whereb and n are the order pa-
rameter and correlation length critical exponents, resp
tively. Close to criticality, the probabilityP to find a perco-
lating cluster on a finite sample of sideL can be described by
means of an error function@13#

P5
1

A2pD
E

2`

p

expF2
1

2 S p* 2pc

D D 2Gdp* , ~1!

where D is the width of the transition region. It is wel
known that the width vanishes in the thermodynamic lim
according@13# to

D}L21/n. ~2!

Equation~2! is very useful because it allows for the measu
of the correlation length exponentn that governs the diver-
©2003 The American Physical Society06-1
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gence of the correlation length asj}up2pcu2n ~for random
percolation withd52 one hasn54/3).

Very recently it has been suggested that the jamm
probability and the fluctuations of the jamming covera
may obey relationships similar to Eqs.~1! and ~2! @8#, re-
spectively. Also, for the jamming upon RSA of needles
two dimensions, the valuenJ51.060.1 has been reporte
@8#, and this figure is independent of the aspect ratio of
needles. Furthermore, early numerical results of Nakam
for the RSA of square blocks are also consistent withnJ
.1 @15#, while Kondrat and Pekalski@9# have reportednJ
51.0060.05 for the RSA of segments on the square latti
Since the obtained values for the exponent are indepen
~within error bars! of ~i! the length of the segments~for all
a51,2, . . .,45) @9#, ~ii ! the aspect ratio of the needles@8#
and ~iii ! the size of the square blocks@15#, it has been sug-
gested thatnJ is a good candidate for an universal quantity
the jamming process@9#.

The aim of this paper is to provide a qualitative derivati
of Eq. ~2! for the case of RSA on heterogeneous media. I
shown that the exponentnJ can be obtained as a function o
the dimensionalityD of the space and the fractal dimensio
df of the subset of sites where the RSA process actually ta
place. Our main result

nJ5
2

2D2df
~3!

provides a solid ground to previous numerical data@8,9,15#.
In fact, these data were obtained inD52 anddf52, so it
follows straightforwardly from Eq.~3! that nJ51 exactly.
Furthermore, in this work, the validity of the proposed re
tionship ~3! is verified by means of extensive numeric
simulations, using both homogeneous substrates as we
different random fractals.

II. DEFINITIONS AND APPROACHES

When studying RSA on homogeneous samples, the d
nition of the jamming coverage and its fluctuations
straightforward, since one has to deal with a single stocha
process. However, RSA on nonhomogeneous substrates
involve the treatment of at least two correlated stocha
processes: the selection of the particular substrate where
deposition is going to take place and the RSA process its
In relation with the first process we will define thesubstrate
systemas the set$Al%, composed ofM different independen
substrates labeled by the indexl51, . . . ,M . We consider
that n independent RSA processes are performed for e
elementAl of the substrate system until the jammed state
reached. We callBk

(l) (k51, . . . ,n) the n different configu-
rations adopted by the entities adsorbed on top of the s
strate. The set$Bk

(l)% taken for the values ofk ~for each and
all substrate! will be referred to as the RSA system.

The jamming coverageuJ is a relevant intensive quantit
that takes the valueuk

(l) when evaluated over the configur
tion Bk

(l) . Let us explicitly consider two contributions touJ

given by
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uJ5u$sub%1du$RSA% , ~4!

It is also assumed that the first term gives the most impor
contribution touJ , which can be evaluated according to

u (l)5 (
k51

n uk
(l)

n
. ~5!

Then, the fluctuations of this term are given by

s$sub%5A(
l51

M
~u (l)2^uJ&!2

M21
, ~6!

where^uJ& is the average value ofuJ , taken over all mea-
surements and configurations

^uJ&5 (
l51

M
u (l)

M
. ~7!

The second term in Eq.~4! has a zero average for a fixe
substrate. Some fluctuations inu must also appear from thi
term and can be characterized by the following average@16#:

s$RSA%
2 5 (

l51

M su
(l)2

M
, ~8!

su
(l) being given by

su
(l)5A(

k51

n
~uk

(l)2u (l)!2

n21
. ~9!

It should be stressed thats$sub% ands$RSA% account for the
fluctuations on the substrate and RSA system, respectiv
So, it is expected that these quantities will describe the
evant physical behavior related with both sources of rando
ness.

Finally, the total root mean square~rms! deviation su ,
which is expected to describe the fluctuation of the wh
system, is given by

su5A (
l51,k51

M ,n
~uk

(l)2^uJ&!2

Mn21
. ~10!

In general, different rms’s are related. In the simplest c
where both contributions in Eq.~4! are statistically indepen
dent, the total fluctuation ofu is given by

su5As$Sub%
2 1s$RSA%

2 . ~11!

As will be shown later, Eq.~11! is essential for the analy
sis of numerical data obtained using finite systems and t
corresponding extrapolation to the thermodynamic limit, b
cause each term may behave according to different la
Therefore, simply measuringsu , one may obtain inaccurat
results, undesired crossover effects and consequently,
leading physical interpretations.

Let us now evaluate the fluctuations associated with
RSA system using the definition given by Eq.~8!. Let ni
6-2
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50,1 define the occupational state of the sitei. N5( i 51
LD

ni is
the number of particles deposited in a volumeV5LD of a
D-dimensional lattice with periodic boundary condition
The two-point correlation function for a homogeneous s
strate is given by

G~ i , j !5^ninj&2^ni&^nj&, ~12!

where i , j labels sites and̂& means average taken over th
RSA system in whichN varies. There is a fundamental rel
tionship betweenG and the fluctuation in the number o
particles given by

sN
2 5 (

i , j 51

LD

G~ i , j !. ~13!

For the case of a unique homogeneous substrate it is
known that, when the correlation length is much shorter th
the size of the system, one has

sN
2 5gNA . ~14!

Here g5( j 51
LD

G( i , j ) is independent ofNA , the number of
sites where RSA takes place. The fluctuation of the den
(u) in the thermodynamic limit can be obtained after divi
ing both sides of Eq.~14! by a L2D, so that

s$RSA%}L2D/2. ~15!

Let us now generalize this result in order to show tha
still holds for substrates having sites where deposition is
bidden. The existence of these blocked sites on the adsor
surface breaks the translation symmetry of the substr
which is a necessary condition in order to obtain Eq.~15!.
However, an equation analogous to Eq.~15! can still be
found if we restrict ourselves to those cases where altho
each substrateAl is nonhomogeneous, the set$Al% is homo-
geneous as a whole, i.e., there are no preferred blocked
on the average. Stated in a more quantitative way, the
lowing calculations are valid for systems where the aver
of ni over substrates is independent ofi. Then, using a pro-
cedure analogous to that employed in the derivation of
~8!, one can generalize Eq.~13! by writing

sN$RSA%
2 5 (

l51

M

(
i , j 51

LD

Gl~ i , j !

M
5 (

i , j 51

LD S (
l51

M
Gl~ i , j !

M D ,

~16!

where the expression within parentheses could be a mea
of correlations over the substrate system. However, fo
fixed sitei there may exist substrates in the adsorptive ma
where the deposition is forbidden, so thatGl( i , j )[0 for all
j. Then, since not all theM substrates would be contributin
in the sum overl, simply dividing byM one cannot obtain
the real average ofG over l. In order to have a prope
average of the RSA correlation function, it is necessary
introduce a factorXi , such thatXiM is the actual number o
04110
.
-

ell
n

ty

t
r-
ing
te,

h

tes
l-
e

q.

ure
a
x

o

substrates withGl( i , j )Þ0. It should be noticed that for sys
tems that are homogeneous as a whole, one hasXi[X, so
that

sN$RSA%
2 5X (

i , j 51

LD

(
l51

M
Gl~ i , j !

MX
5X (

i , j 51

LD

G* ~ i , j !. ~17!

In order to evaluateX, the fraction of substrates where
site is not blocked, one has to count the number of nonz
terms in Eq.~16!. Adding first overj, one obtains

gl~ i !5(
j 51

LD

Gl~ i , j !. ~18!

Notice that this procedure implies thatgl( i )[0 for
blockedi sites in a fixed substratel, while gl( i )Þ0 other-
wise. The remaining double sum

(
l51,i 51

M ,LD

gl~ i ! ~19!

can be computed fixingl and runningi over the sites. Then
one obtains that the number of contributing terms is exa
the number of active sites in this substrate. Therefore,
summation overl hasMLdf terms, whereLdf is the average
number of active sites of the lattice where RSA actua
takes place.

When i is fixed and the sum given by Eq.~19! runs over
l, it yields MXi terms~instead ofM ). Then the summation

( i 51
LD

MXi has MLDXi terms. Comparing now both result
and using again the fact that there are no preferred site
the global system, it follows thatX5Ldf /LD. It should be
noted that this correction factor is not totally unexpected.
fact, for a substrate system that is homogeneous as a w
one expects that the fraction of substrates with a fixed sii
activeXi , should equal the average proportion of active si
given byLdf /LD.

Now, replacingX in Eq. ~17!, it follows

sN$RSA%
2 5

Ldf

LD (
i , j 51

LD

G* ~ i , j !. ~20!

If the substrate system is homogeneous as a whole, thenG*
should be invariant under translations, because the ave
of G over l should have the same symmetries than those

the substrate system. Thus,g* ( i )5( j 51
LD

G* ( i , j ) must be
site independent@i.e., g* ( i )5g0* ], and then Eq.~20! be-
comes

sN$RSA%
2 5Ldfg0* . ~21!

Finally, if the correlation lengthj$RSA%* associated withG*
for the RSA process is short enough (j$RSA%* !L), g0* is L
independent. Then the fluctuation of the density (u) can be
obtained from Eq.~21! dividing by L2D, so that

s$RSA%}L21/n, ~22!
6-3
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LOSCAR, BORZI, AND ALBANO PHYSICAL REVIEW E68, 041106 ~2003!
where

n5
2

2D2df
. ~23!

It should be stressed that Eqs.~22! and ~23! are quite
general relationships valid for substrate systems that are
mogeneous as a whole. Furthermore, the condition that
correlation length of the RSA process should be smaller t
the system size is usually valid for jammed states, where
correlation length is very short.

Equations~22! and ~23! also hold for homogeneous sub
strates, withLdf5LD and Gl[G, so n52/D. These equa-
tions are also valid for nonhomogeneous random substr
where the dimensionalityD of the space may be different t
the dimensionality of the subset of sites where the RSA p
cess actually takes place. It is also very interesting to no
that using these relationships it may be possible to eval
df performing RSA both in numerical simulations and actu
experiments. Furthermore, existing numerical simulatio
performed inD52 dimensions withdf52 are in excellent
agreement with Eqs.~22! and ~23! @note that for these con
ditions it follows straightforwardly from Eq.~23! that n51
exactly#. ~i! Nakamura@15# has reportednJ.1 ~RSA of
square blocks!, ~ii ! Vandewalleet al. @8# have reportednJ
51.060.1 ~RSA of needles!, and~iii ! Kondrat and Pekalsk
@9# have reportednJ51.0060.05 ~RSA of segments!.

In addition to these promising results, we will provid
more stringent tests of the validity of Eq.~23! performing
numerical simulations of the RSA of dimers on homog
neous substrates ind51,2 dimensions as well as using fra
tal substrates.

III. DETAILS ON THE NUMERICAL SIMULATION OF
RSA OF DIMERS

RSA of dimers on binary alloys.The first set of simula-
tions are performed for the RSA of dimers~the RSA system
being the adsorbed atoms! on a binary alloy~BA! annealed
at a given temperature~substrate system!. The BA is simu-
lated using the isomorphism with the Ising model@17#,
namely, spin-up[A species and spin down[B species. The
square lattice of sideL in D51,2 dimensions with neares
neighbor~NN! interactions will be considered. The sideL of
each lattice is measured in lattice units~l.u.!. The BA is in
contact with a thermal bath at temperatureT. The system is
assumed to obey Kawasaki dynamics@17#, so that the den-
sity of speciesA andB is conserved withrA5rB51/2. The
HamiltonianH is given by

H5E02J(
^ i , j &

sisj , ~24!

where E05N(eAA1eBB12eAB), J52(1/4)(eAA1eBB
22eAB), eXY is the interaction energy betweenX andY spe-
cies, andsi561 indicatesA,B sites so that( isi50 @18#.
The Monte Carlo time step~MCS! involves LD trials, such
that each species of the sample is selected once on ave
Stationary configurations of the BA are obtained after dis
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garding 105 MCS. It is well known that forD51 the system
is not critical, exhibiting a~trivially ! ordered phase only fo
T50. However, inD52 dimensions the system undergo
an order-disorder transition atTc52.269 . . . , where Tc is
the Onsager critical temperature~the temperatureT is mea-
sured in units ofJ setting Boltzmann constant at unity!. Be-
low this transition temperature, the dynamics of the unde
ing Ising model can be very slow because the system
trapped on different metastable states separated betw
each other by high energy barriers. In order to have me
ingful and systematic results, we have taken the same in
configuration for the simulation of each low temperatu
substrate (T,Tc). The starting configuration chosen was t
one with lowest energy, in whichA andB species are segre
gated into two identical domains, separated by nondefec
~straight! domain walls.

RSA of dimers on the BA is assumed to take place on
of NN sites occupied by unlike species, i.e.,AB sites, ad-
sorption onAA andBB sites being forbidden. Also multiple
occupation ofAB sites is forbidden. These assumptions a
based on the dissociative chemisorption of diatomic m
ecules (O2 , H2 , N2 , etc.! on binary catalysts. It is well
known that in the absence of dimer’s diffusion there is
jammed state@19#, so that the relevant quantity is the jam
ming coverageuJ . In the case of homogeneous (D51) lat-
tice one has the exact resultuJ512e22.0.864 664 72~Ref.
@6#!. Also, in the homogeneous (D52) lattice one hasuJ
'0.906~Ref. @6#!. For the present case of a BA, one expe
the coverage to depend on the temperature at which the
strate has been annealed. Also, it should satisfyuJ

(AB)<uJ ,
due to the additional constraint that dimmers can only
adsorbed on specific pairs of sites of the lattice.

RSA of dimers on fractal surfaces.We have also studied
the RSA of dimers on stochastic fractals such as the diffus
front @11,12# and Ising clusters@17#. It is important to stress
that these chosen fractals satisfy the required property
invariance due to their stochastic nature, so that Eqs.~22!
and ~23! are expected to hold.

Considering a BA atT5TC , the greatest cluster made u
taking NN sites occupied by the same species is selected
different lattice sizes. This kind of substrate, called spin cl
ters of the Ising model~SCIM!, are fractals with a fracta
dimension given by

df5D2
b

n
, ~25!

whereD is the Euclidean dimension,b andn are the order-
parameter and the correlation-length critical exponents,
spectively. ForD52 one hasb5 1

8 and n51, so thatdf
515/8.

In order to simulate the RSA of dimers on SCIM’s, a s
of the cluster is selected at random. If that site is empty
NN site is also selected at random. The adsorption tria
successful only if that second selected site is also em
otherwise if that site is either occupied or lies outside
fractal, the trial is disregarded. Therefore, double occupa
of sites belonging to the fractal is forbidden.
6-4
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RSA along the perimeter of SCIM’s has also been stud
For this purpose, only adsorption events of dimers tak
place on two NN sites, such that one of them belongs to
cluster and the remaining one is outside it, are considere

Another type of stochastic fractal used for RSA simu
tions is that generated by a diffusion front. In fact, it is w
known that the properties of the diffusion front@21–25# are
closely related to those of the incipient percolation clus
@11–13#. The front is a~stochastic! self-similar fractal of
dimension@20# df

DF510/7'1.428 57@21–23#.
In order to obtain diffusion fronts suitable for RSA o

dimers, we have simulated the diffusion of particles at r
dom. Hard-core interactions, on aD52 square lattice of size
L3L, have been considered. There is a source of particle
the first row of the latticey51,1<x<L kept at concentra-
tion p(y)[1. Also, at the last rowy5L,1<x<L, there is a
well such thatp(L)[0. So, there is a concentration gradie
along the source-well direction, while along the perpendi
lar x direction periodic boundary conditions are imposed.
the concentrationp(y) of particles depends on the positio
decreasing from the source to the well, one actually ha
gradient percolation system. The structure of the diffus
front is identical to the structure of the hull of the incipie
percolation cluster@21,26#. Furthermore, the concentration o
particles at the mean front positionyf is the same as the
percolation thresholdpc , so thatp(yf)5pc @21,27#.

Considering that particles are connected to their fi
neighbors while empty sites are connected to both their
and second neighbors, the system can conveniently be
scribed by means of the following geographical analogy. T
land is the set of particles connected to the source and the
is the set of connected empty sites not surrounded by la
Also, an island is formed by groups of particles not co
nected with the land, while lakes are formed by connec
empty sites surrounded by land. Finally, the seashore is
part of the land in contact with the sea that can be identi
with the diffusion front, which is a self-similar fractal.

RSA of dimers on diffusion fronts has been simulat
using two rules: Rule I is that used for the case of RSA
the SCIM perimeter~see above!; while using Rule II one
only allows the adsorption on sites of the diffusion fron
disregarding adsorption trials on already occupied sites
the front and sites outside the fractal.

IV. SIMULATION RESULTS AND DISCUSSION

RSA of dimers on binary alloys.The simplest test for Eq
~23! corresponds to the caseD5df51. Since for BA we are
only allowing deposition on unlike sites, this example can
realized taking a one-dimensional BA with nearest-neigh
repulsion between unlike species~antiferromagnetic Ising
system!. In fact, considering the ground state atT50, cor-
responding to a fully ordered sample, one has that the B
irrelevant and the system is equivalent to the standard R
of dimers in D51. On the other hand, forT.0 one has
disordered samples with an homogeneous distribution
blocked sites, i.e.,AA and BB sites where dimers are no
adsorbed. Particularly, atT5` one has a fully disordered
substrate. The obtained results are shown in Fig. 1 as log
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plots of s$RSA% vs L. The best fits of the data given52.00
60.01 andn52.0160.01 for the casesT50 and T5`,
respectively. Both figures are in excellent agreement with
prediction of Eq.~23! for D5df51, namely,n52.

The second example considered corresponds to RSA
D52 BA with NN attractive interactions between alike sp
cies, i.e., the ferromagnetic version of the Ising model w
conserved order parameter. In this case one can also tes
validity of Eq. ~11! by measuring all the involved terms ac
cording to Eqs.~6!, ~8!, and ~10!, respectively. Figure 2
shows log-log plots ofsu versusAs$Sub%

2 1s$RSA%
2 obtained

for the case of RSA of dimers on two-dimensional BA
Data were taken at different temperatures and using latt

FIG. 1. Log-log plots ofs$RSA% vs L obtained the case of RSA
on BA’s in one dimension (D51). BA’s at two different tempera-
tures,T50 andT5`, are considered as shown in the figure. N
tice that the lattice sideL andT are measured in l.u. and in units o
J, respectively.

FIG. 2. Log-log plots ofsu vs As$Sub%
2 1s$RSA%

2 , as suggested
by Eq. ~11!. The different terms involved in Eq.~11! were obtained
according to Eqs.~6! and~8! ~horizontal axis! and Eq.~10! ~vertical
axis!, respectively. The straight line has a slope of unity.
6-5
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of different sizes. The excellent straight line obtained, cor
sponding to 150 independent measurements, strongly
ports the validity of Eq.~11!.

Also, Fig. 3 shows plots ofs$RSA% versusL for the RSA of
dimers on BA’s obtained at different temperatures. It is fou
that the power-law decay predicted by Eq.~22! always holds
allowing us to determine the exponentsn. At low tempera-
tures, belowTc , one has that the BA segregates into doma
of alike species containing a certain density of unlike spec
~impurities! trapped into the bulk, which increases when t
temperature is raised. Since dimer adsorption on the bul
the domains is not possible due to the adsorption rule
have been imposed, at very low temperatures the RSA
cess is essentially restricted to the interface between
mains. In this case one hasdf51 and Eq.~23! predictsn
52/3, in excellent agreement with the results obtained fitt
the curves, as shown in the inset of Fig. 3. Increasing
temperature and particularly close toTc , the density of im-
purities located into the bulk of the domains increases. C
sequently, an increasing number of pairs of sites beco
available for the RSA of dimers. However, not all these si
contribute to the fluctuations of the jamming coverage. T
simplest example is the case of a single impurity surroun
by unlike species where only one dimer, with four possi
orientations, can be adsorbed. Therefore, fluctuations of
jamming coverage are only relevant when adsorption ta
place in rather complex arrangements of impurities that
present in the domains close toTc . For these reasons on
observes a smooth increase ofn when approaching the criti
cal point from below, as shown in the inset of Fig. 3. Final
for T>TC one has that adsorption sites, given by neare
neighbor pairs of unlike species, are homogeneously dis
uted on the sample withD52 anddf52. For this case, Eq
~23! predictsn51 in excellent agreement with the numeric
results shown in the inset of Fig. 3. It should be noted t
the smooth variation ofn, observed in the inset of Fig.
when approachingTc , may be due to finite-size effects th

FIG. 3. Log-log plots ofs$RSA% vs L obtained at different tem-
peratures performing in each casen5500 andM5500 measure-
ments. The inset shows the temperature dependence of the exp
n. Notice that the lattice sideL and T are measured in l.u. and i
units of J, respectively.
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hinder the evaluation of the actual exponents. If this is
case, the exponents 2/3,ne f f,1 may be considered as e
fective size-dependent exponents.

In order to further support the above discussed interpr
tion of the evaluated values of the exponentn, numerical
simulations using samples having controlled interface rou
ness and concentration of impurities have been perform
The starting substrate is a ground state of the BA (T50) in
D52. The half-left~-right! side of the sample is filled with
A ~B! species, so that a perfectly flat interface ofAB species
runs along the middle of the sample. Since RSA on t
substrate has zero rms, the original interface is modified
troducing kinklike defects with probabilitypk . The resulting
interface where the RSA process actually occurs is homo
neous with fractal dimensiondf51, so that according to Eq
~23! one should expect an exponentn52/3. This prediction
is again in excellent agreement with the numerical res
obtained takingpk50.005, 0.05, 0.3, and 0.5, as shown
Fig. 4~a!. Of course, forpk50.005 and small lattices (L
<100), finite-size effects are observed due to the finite pr
ability of having a perfectly flat interface without fluctua
tions.

In addition to the test described previously, samples w
a fixed interface roughness (pk50.3) in the example shown
in Fig. 4~b! were decorated with a controlled density (r I) of
impurities uniformly distributed in the bulk of the domain
Figure 4~b! shows that the presence of impurities not on
causes the fluctuations to increase but alson→1 for large
values ofr I , as expected forD52 anddf52 according to
Eq. ~23!. The valuen50.7060.03 obtained forr I51/8 is
very close to the figuren52/3 corresponding tor I50 since
a majority of isolated and small clusters of impurities c
neither significantly influence the fluctuations nor the exp
nent. In fact, only more complex clusters of impurities,
those formed forr I51/3 andr I52/3 in the example shown
in Fig. 4~b!, allow for a large variety of adsorption configu
rations with an appreciable enhancement of the fluctuati
of the RSA process that causes a noticeable effect on
exponent.

RSA of dimers on fractal surfaces.Figure 5 shows log-log
plots of s$RSA% versusL obtained upon RSA of dimers o
SCIM’s. In this example one hasD52 anddf515/8, so that
the valuen516/17.0.941 176 is expected according to E
~23!. The results obtained fitting the data corresponding
RSA on the bulk of the cluster and on its perimeter aren
50.94160.007 andn50.9360.02, respectively. In the lat
ter case for small lattices (L<60), finite-size effects are ob
served as in the analogous percolation problem@13#. Also,
Fig. 5 shows the results for the RSA of dimers on a diffusi
front in D52. This is an interesting example to test th
validity of Eq. ~23! using a stochastic fractal with a wel
known fractal dimensiondf510/7. For this example one ex
pectsn50.777 . . . , while the best fit of the numerical dat
shown in Fig. 5 givesn50.7760.01, using two different
adsorption rules as discussed above. These results are a
excellent agreement with Eq.~23!, giving further numerical
support to the analytical relationship derived in Sec. II.

ent
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Interplay between fluctuations of correlated stochas
processes.It should be stressed that in order to capture
physics of the RSA process, all the fluctuations measure
the previous sections were evaluated with the aid of Eqs.~8!
and ~9!. The aim of this section is to show that a quite d
ferent physical picture can be obtained measuring the fl
tuations linked with the substrate system. Let us recall t
for this purpose one also has to perform RSA measureme
however, fluctuations have to be evaluated using Eq.~6!,
which ~within the context of the present work! captures the
physics of the underlying substrate where the RSA proc
takes place.

As an example, the discussion will be restricted to
case of RSA of dimers on a BA inD52, in order to perform
comparisons with the data obtained in the simulations sho
in Figs. 2 and 3. Considering a single configuration of

FIG. 4. Log-log plots ofs$RSA% vs L obtained for a simple one
dimensional interfacial model embedded in a two-dimensional
tice (L is measured in l.u.!. The parameterpk allows us to choose
between different interface roughnesses, whiler I accounts for the
density of two-dimensional defects in the bulk. For additional d
tails on the model, see the text.~a! Data corresponding tor I50 and
different values of the roughness, as listed in the figure.~b! Data
obtained keeping the roughnesspk50.3 fixed and using differen
values ofr I , as listed in the figure.
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alloy and according to the adsorption rules, one has thatuJ is
essentially a measure of the density ofAB sites present in the
configuration. Furthermore, such pairs~which are known as
the ‘‘broken bonds’’ in Ising spin language! contribute to the
internal energy per site of the BA (u). Applying the
fluctuation-dissipation theorem@28# it is possible to show
that the specific heat of the BA@CV5(]u/]T)V# is given by
the fluctuations ofu, namely,

CV5
L2

T2 (
l51

M
~ul2^u&!2

M21
5

L2

T2
su

2 , ~26!

where averages are taken over the set$Al% of different con-
figurations of the BA. On the other hand, for theD52 Ising
model, one has that

CV~T!}uT2TCua, ~27!

with a[0, i.e., a logarithmic divergence at criticality
Analogously, one can define an RSA ‘‘susceptibility’’x for
the jammed state as

x5L2(
l51

M
~uJ

l2^uJ&!2

M21
5L2s$Sub%

2 , ~28!

where it is expected that, if the system conformed by
deposited particles would follow~or ‘‘copy’’ !, in some way,
the structure of the underlying substrate,x would follow the
same behavior as that ofCV .

Figure 6 shows that plots ofx versusT, obtained using
lattices of different sizes, exhibit clear peaks close to
critical temperature of the underlying BA, resembling t
behavior of the specific heat in finite samples. In fact,
peaks are shifted and rounded due to operation of finite-
effects. This behavior is the typical one for a second-or

t-

-

FIG. 5. Log-log plots ofs$RSA% vs L for the case of RSA on
random fractals (L is measured in l.u.!. Considering spin clusters o
the Ising model~SCIM! at Tc , it is found that Eq.~23! is valid
when the RSA process is done on both the bulk and the perim
cluster. Also, results obtained upon RSA on the fractal generate
diffusion fronts~DF! with two different adsorption rules are shown
For details on the SCIM and the adsorption rules, see the text.
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LOSCAR, BORZI, AND ALBANO PHYSICAL REVIEW E68, 041106 ~2003!
phase transition that implies the existence of a diverging c
relation lengthj when approaching criticality according@17#
to

j~T!}uT2TCu2n* , ~29!

wheren* 51 is the correlation-length exponent of the Isin
model. Using finite-size scaling arguments one can
L1/n* uT2Tcu'1 @17#, then replacing into Eq.~27! with a
50, and assuming that close to criticality one hasx;Cv , it
follows

xmax~L !} ln~L !, ~30!

wherexmax is the maximum value ofx which can be ob-
tained from the peaks shown in Fig. 6. The results shown
Figs. 7~a! and 7~b! confirm the divergences ofx expected
according to Eqs.~27! and~30!, respectively. So, this finding
shows that there is an additional~divergent! correlation
length of the RSA process that is associated to the subst
and it can be captured by measuringx.

From Figs. 3, 6, and 7, as well as according to the ab
discussion, it follows that the RSA of dimers on BA’s pr
vides an interesting example of the interplay between
correlated processes whose respective fluctuations obey
ferent functions. It is worth mentioning that, in spite of e
hibiting quite different behavior, both functions capture t
criticality of the substrate. In fact, the fluctuations of t
jammed state, as measured according to Eqs.~6! and ~28!,
reflect the critical behavior of the BA through the relatio
ship betweenx andCv while, on the other hand, using Eq
~8! and~9! the criticality of the BA becomes evident throug
the jump of the exponentn observed close toTc ~see Fig. 3!.
It is also interesting to remark that the relationship that
lates the different fluctuations of both processes, given
Eq. ~11!, does not show such a critical behavior at all,
shown in Fig. 2.

In order to further analyze these results, let us definef*
5s$RSA% /s$Sub% , such asf* gives a measure of the relativ

FIG. 6. Plots ofx vs T obtained for the RSA of dimers on BA
using lattices of different sizesL (T is measured in units ofJ while
L is given in l.u.!. The data exhibit the typical behavior characte
istic of a second-order phase transition.
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intensity of the RSA fluctuations as compared to those of
substrate. Then, using Eqs.~22!, ~28!, and ~30!, it follows
that

f* 5f~T! f ~L !5f~T!
L21/n

L21Aln~L !
, ~31!

where theL-dependence behavior off* appears explicitly
through the functionf (L), while f(T) accounts for the tem-
perature dependence. Figure 8 shows that log-linear plot

FIG. 7. Data corresponding to the RSA of dimers on BA’s.~a!
Linear-log plot ofxmax vs L, whereL is measured in l.u.~b! Linear-
log plot of x vs uT2TCu ~whereT is measured in units ofJ) ob-
tained using lattices of sizeL5256 l.u. Both plots show thatx
reflects the divergences of the specified heat of the underlying

FIG. 8. Plot off vs T (T is measured in units ofJ), obtained
using lattices of different sizesL, measured in l.u. The jump ob
served inf occurs atTC ~dashed line!. The solid lines have been
drawn to guide the eyes.
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FLUCTUATIONS OF JAMMING COVERAGE UPON . . . PHYSICAL REVIEW E68, 041106 ~2003!
f(T)5f* / f (L) versusT exhibit an acceptable collapsing
At both sides ofTC the functionf(T) approximately follows
a logarithmic behavior, resembling the temperature dep
dence ofx nearTc . Moreover, a clear jump appears atTc ,
due to the change in the fractal dimension of the adsorb
set of sites of the substrate (df51 for T,Tc anddf52 for
T>Tc) observed in the finite samples used in the simu
tions. This result implies that the temperature dependenc
the structure of the substrate prevails over that of the R
process, and that the fluctuations due to substrate also pr
over those due to the RSA process@note thatf (L)→0 when
L→`].

V. CONCLUSIONS

In this paper the behavior of the fluctuations of the ja
ming coverage upon RSA process on homogeneous and
homogeneous substrates has been studied. Pointing the
tion to the RSA process and applying the definition given
Eq. ~8! in order to measure the fluctuations, we have sho
both analytically and by means of numerical simulations t
the jamming fluctuations behave assuJ

}L21/nJ, wherenJ is
p

.
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given bynJ52/(2D2df), D anddf being the dimensions o
the lattice and that of the active sites where adsorption a
ally takes place, respectively. These results are suitabl
describe systems characterized by a short-range correla
length of the RSA process that may take place on both
mogeneous and nonhomogeneous substrates. From our
vation of Eq. ~23!, it follows that nJ51 for D52 and df
52, in accordance with results published previously by va
ous authors@8,9,15#.

It should also be noted that Eq.~23! allows us to measure
the fractal dimension of the different adsorption sets wh
deposition takes place according to the specified adsorp
rules. Summing up, our results not only point out that
careful treatment of the fluctuations of correlated processe
necessary in order to capture the desired physical beha
but also provide a tool for the evaluation of fractal dime
sions using RSA experiments.
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