PHYSICAL REVIEW E 68, 041106 (2003

Fluctuations of jamming coverage upon random sequential adsorption on homogeneous
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The fluctuations of the jamming coverage upon random sequential adsofiRf@) are studied using both
analytical and numerical techniques. Our main result shows that these fluctatiarescterized byrf,J) decay
with the lattice size according to the power ImeL‘l’V. The exponeni depends on the dimensionaliy
of the substrate and the fractal dimension of the set where the RSA process actually taked;placeofding
to v=2/(2D —ds). This theoretical result is confirmed by means of extensive numerical simulations applied to
the RSA of dimers on homogeneous and stochastic fractal substrates. Furthermore, our predictions are in
excellent agreement with different previous numerical results. It is also shown that, studying correlated sto-
chastic processes, one can define various fluctuating quantities designed to capture either the underlying
physics of individual processes or that of the whole system. So, subtle differences in the definitions may lead
to dramatically different physical interpretations of the results. Here, this statement is demonstrated for the case
of RSA of dimers on binary alloys.
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[. INTRODUCTION 0 of the total surface occupied by adsorbed objects, which is
called the jamming coverag® = 6(t— ). Within this con-
Physical and chemical properties of adsorbed monolayertext, the RSA of needlefor linear segmenjson homoge-
are being studied with increasing interest because their urpeous, two-dimensional samples, has very recently attracted
derstanding is essential for the rationalization of many pheconsiderable interesf8,9]. Particular attention has been
nomena and processes occurring on surfaces and interfacééawn to the interplay between jamming and percolation
such as adsorption, desorption, catalysis, corrosion, wetting8—10. Of course, the percolation problem is a topic of enor-
adhesion, diffusion, etc. The equilibrium behavior of suchMOUs interest by itself, due to their applications not only in
overlayers can be described by a Gibbs measure pararﬁgatlstmal physms but als_o in many other areas su_ch as the
etrized by the coveragé and the temperatur® Within this study of dl'sord('ared media, fdes in porous materials, sys-
context, the critical behavior of adsorbed films has extent€Ms of biological and ecc_)loglca_l interest, e{d__l_—le].
sively been studied1—3]. On the other hand, numerous _Therefore, a great progress in the field of the statlstl_cal phys-
ics of far-from-equilibrium processes could be achieved by

physical processes can be modeled as the sequential, Irrgétablishing links between RSA and percolatiga-10.

versible filling of a surface by atoms or mdecmes' Some Percolation is essentially a geometrical critical phenom-
examples are_the reaction at specm_c sites on a polymet,, e percolation transition is related to the probability of
ch_am, adsorption onto surfaces, reaction between groups Qi rrence of an infinite connectivity between randomly de-
adjacent surface sites, efé.—6]. - . posited objects, as a function of the fractiprof the sub-
Considering the irreversible deposition of particles on agiate occupied by the objedt&4]. At the critical pointp,,
surface, one has two characteristic time scales: the time bene percolation cluster id dimensions is a random fractal of
tween depositions and the diffusion time of the particles OdimensionDg=d— B/v, where 8 and v are the order pa-
the surface. For very strong interaction between particles anghmeter and correlation length critical exponents, respec-
the substratéchemical adsorption diffusion becomes irrel-  tively. Close to criticality, the probability to find a perco-
evant and the venerated random sequential adsorfRSA)  |ating cluster on a finite sample of sitlecan be described by
model provides an excellent description of the underlyingmeans of an error functiofi3]
processesfor a review on RSA models, see, e.g., Réf).

Under these conditions the system evolves rapidly toward 1 p 1/p*—pc\?
far-from-equilibrium conditions and the dynamics becomes P= J exg — A dp*, (1)
V2mAJ -

essentially dominated by geometrical exclusion effects be-

tween particles. These kinds of effects have been observed WhereA is the width of the transition region. It is well

numerous expgnmen{s?]. ) . . known that the width vanishes in the thermodynamic limit
When RSA involves adsorption on single sites, the case Sccording[13] to

termed “monomer filling.” Also, processes involving adja-

cent pairs of sites are referred as “dimer filling,” while ad- Ao~ 2)

sorption on larger ensembles of sites corresponds to “animal

filling” [6]. A quantity of central interest for the understand- Equation(2) is very useful because it allows for the measure

ing of RSA processes is the asymptotic value of the fractiorof the correlation length exponemtthat governs the diver-
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gence o_f the porrelation length gs:|p—p.| " (for random 0;= O(suty+ 50irsA , (4)
percolation withd=2 one hasy=4/3).

Very recently it has been suggested that the jammingt is also assumed that the first term gives the most important
probability and the fluctuations of the jamming coveragecontribution toé;, which can be evaluated according to

may obey relationships similar to Eq&l) and (2) [8], re- "
6

spectively. Also, for the jamming upon RSA of needles in =S k 5
two dimensions, the value;=1.0+0.1 has been reported = ®)
[8], and this figure is independent of the aspect ratio of the

needles. Furthermore, early numerical results of Nakamur@hen, the fluctuations of this term are given by

for the RSA of square blocks are also consistent wigh

=1 [15], while Kondrat and Pekalsk®] have reported, \/ V(N —(6,))2

=1.00+0.05 for the RSA of segments on the square lattice. Tsuy= N 2 w1 (6)

Since the obtained values for the exponent are independent

(within error bars of (i) the length of the segmentfor all - \ynere(g,) is the average value aof;, taken over all mea-

a=12,...,45) [9], (ii) the aspect ratio of the needlf8]  gyrements and configurations
and (iii) the size of the square block&5], it has been sug-

gested that; is a good candidate for an universal quantity of M)

the jamming procesg9)]. (6;)=> o (7
The aim of this paper is to provide a qualitative derivation M=l

of Eq. (2) for the case of RSA on heterogeneous media. It is

shown that the exponem, can be obtained as a function of substrate. Some fluctuations éhmust also appear from this

the dimensionalityD of the space and the fractal dimension : ;
. term and can be characterized by the following avefaéé
d; of the subset of sites where the RSA process actually takes y g i

The second term in Ed4) has a zero average for a fixed

place. Our main result Mo )2
frsa= 2 ®
2 TRSAT & M
= 3
YI72D—d, ® o™ being given by
provides a solid ground to previous numerical d@®,15. o (g — gWN))2
In fact, these data were obtainedn=2 andd;=2, so it oy = gl o1 ©)

follows straightforwardly from Eq(3) that v;=1 exactly.
Furthermore, in this work, the validity of the proposed rela- |t should be stressed thafs,y andorss account for the

tionship (3) is verified by means of extensive numerical fiyctuations on the substrate and RSA system, respectively.
simulations, using both homogeneous substrates as well & it is expected that these quantities will describe the rel-

different random fractals. evant physical behavior related with both sources of random-
ness.
1. DEFINITIONS AND APPROACHES Finally, the total root mean squafems) deviationoy,

which is expected to describe the fluctuation of the whole
When studying RSA on homogeneous samples, the defsystem, is given by

nition of the jamming coverage and its fluctuations is
straightforward, since one has to deal with a single stochastic \/ M.n (6N —(0,))2
Typ=

process. However, RSA on nonhomogeneous substrates may (10
involve the treatment of at least two correlated stochastic

processes: the selection of the particular substrate where the
deposition is going to take place and the RSA process itseI(Nh
In relation with the first process we will define teabstrate
systemas the sefA, }, composed oM different independent

substrates labeled by the indax1, ... M. We consider N S S, (11)
that n independent RSA processes are performed for each 0 {Sult = T{RSA

elementA, of the substrate system until the jammed state is  ag will be shown later, Eq(11) is essential for the analy-
reached. We caB() (k=1, ... n) then different configu-  sis of numerical data obtained using finite systems and their
rations adopted by the entities adsorbed on top of the sulsorresponding extrapolation to the thermodynamic limit, be-
strate. The sefB{"} taken for the values df (for each and  cause each term may behave according to different laws.
all substrate will be referred to as the RSA system. Therefore, simply measuring,, one may obtain inaccurate
The jamming coveragé, is a relevant intensive quantity results, undesired crossover effects and consequently, mis-
that takes the valuéy") when evaluated over the configura- leading physical interpretations.
tion BV . Let us explicitly consider two contributions Let us now evaluate the fluctuations associated with the
given by RSA system using the definition given by E®). Let n;

A=1k=1 Mn-1
In general, different rms’s are related. In the simplest case

ere both contributions in E¢4) are statistically indepen-
dent, the total fluctuation of is given by
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=0,1 define the occupational state of the Sim:E:_:Dlni is  Substrates witl@, (i,j) # 0. It should be noticed that for sys-
the number of particles deposited in a volufle=LP of a  €Ms that are homogeneous as a whole, oneXasX, so

D-dimensional lattice with periodic boundary conditions. that
The two-point correlation function for a homogeneous sub- MG D)
A

LD
strate is given by 2 _
o IN(RSA Xi,jzzl le MX
G(i,j)=(ninp)—(ni){n;), (12)

LD
=x”2:1 G*(i,j). (17

In order to evaluaté, the fraction of substrates where a
wherei,j labels sites and) means average taken over the site is not blocked, one has to count the number of nonzero
RSA system in whichN varies. There is a fundamental rela- terms in Eq.(16). Adding first overj, one obtains
tionship betweenG and the fluctuation in the number of

particles given by ) L o
9,(D)=2, Gy(i.). (18)
LD =1
od= > G(i,j) (13 - - S -
N 1) Notice that this procedure implies thaf, (i)=0 for

=1 N . . : M
blockedi sites in a fixed substrate, while g,(i)#0 other-

For the case of a unique homogeneous substrate it is weffiS€- The remaining double sum
known that, when the correlation length is much shorter than

m,LP
the size of the system, one has

an(i) (19

2 A=1i=1
onN=0Na. (14
can be computed fixing and running over the sites. Then
Hereg=2]f:DlG(i ,j) is independent oN,, the number of ONé obtains that the number of contributing terms is exactly

sites where RSA takes place. The fluctuation of the densitf® number of active Sitgs in this SUbStza'Fe- Therefore, the
() in the thermodynamic limit can be obtained after divid- SUmmation ovek hasML® terms, where. " is the average

ing both sides of Eq(14) by aL2, so that number of active sites of the lattice where RSA actually
' takes place.
U{RSA}MED/z_ (15) Wheni is fixed and the sum given by E¢L9) runs over

\, it yields MX; terms(instead ofM). Then the summation

Let us now generalize this result in order to show that itEiLflM X; has MLPX; terms. Comparing now both results
still holds for substrates having sites where deposition is forand using again the fact that there are no preferred sites in
bidden. The existence of these blocked sites on the adsorbirige global system, it follows thax=_L%/LP. It should be
surface breaks the translation symmetry of the substratéioted that this correction factor is not totally unexpected. In
which is a necessary condition in order to obtain Edp).  fact, for a substrate system that is homogeneous as a whole,
However, an equation analogous to HG5) can still be one expects that the fraction of substrates with a fixedi site-
found if we restrict ourselves to those cases where althougactiveX;, should equal the average proportion of active sites
each substratd, is nonhomogeneous, the 4ét,} is homo-  given by L9/LP.
geneous as a whole, i.e., there are no preferred blocked sites Now, replacingX in Eq. (17), it follows
on the average. Stated in a more quantitative way, the fol-
lowing calculations are valid for systems where the average 5 L9 o
of n; over substrates is independentiohen, using a pro- ONRSA= T 2 G*(i,]). (20
cedure analogous to that employed in the derivation of Eq. L™=t
(8), one can generalize E¢L3) by writing

LD

If the substrate system is homogeneous as a whole,@4fen
should be invariant under translations, because the average

D D
2 _ % < Gi(i.}) _ LE % G\(i.])) of G over\ should have the same sygnmetries than those of
NRSAT &) 521 M iZ1\E M) the substrate system. Thug*(i)==_,G*(i,j) must be
(16)  site independenti.e., g*(i)=g3], and then Eq.(20) be-
comes
where the expression within parentheses could be a measure
of correlations over the substrate system. However, for a g-’%l{RSA}:Ldfgé_ (21

fixed sitei there may exist substrates in the adsorptive matrix

where the deposition is forbidden, so tlaat(i,j)=0 for all Finally, if the correlation IengtrffRsp} associated withG*

j. Then, since not all th# substrates would be contributing for the RSA process is short enougEfF(sp}< L), g5 isL

in the sum oven, simply dividing byM one cannot obtain  independent. Then the fluctuation of the densi#y ¢an be

the real average o6 over \. In order to have a proper obtained from Eq(21) dividing by L?P, so that
average of the RSA correlation function, it is necessary to

introduce a factoX; , such thaiX;M is the actual number of orsacL ™, (22
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where garding 18 MCS. It is well known that foD =1 the system
is not critical, exhibiting atrivially) ordered phase only for
_ 2 23) T=0. However, inD=2 dimensions the system undergoes
2D—d¢’ an order-disorder transition 8t.=2.28 ..., whereT, is
the Onsager critical temperatute temperaturd is mea-

It should be stressed that EqR2) and (23) are quite  sured in units of) setting Boltzmann constant at unitBe-
general relationships valid for substrate systems that are hgow this transition temperature, the dynamics of the underly-
mogeneous as a whole. Furthermore, the condition that thiag Ising model can be very slow because the system gets
correlation length of the RSA process should be smaller tharapped on different metastable states separated between
the system size is usually valid for jammed states, where theach other by high energy barriers. In order to have mean-
correlation length is very short. ingful and systematic results, we have taken the same initial

Equations(22) and (23) also hold for homogeneous sub- configuration for the simulation of each low temperature
strates, withL%=LP andG,=G, sov=2/D. These equa- substrate T<T,). The starting configuration chosen was the
tions are also valid for nonhomogeneous random substrateshe with lowest energy, in whicA andB species are segre-
where the dimensionalitp of the space may be different to gated into two identical domains, separated by nondefective
the dimensionality of the subset of sites where the RSA protstraighy domain walls.
cess actually takes place. It is also very interesting to notice RSA of dimers on the BA is assumed to take place on top
that using these relationships it may be possible to evaluatgf NN sites occupied by unlike species, i.AB sites, ad-
d¢ performing RSA both in numerical simulations and actualsorption onAA andBB sites being forbidden. Also multiple
experiments. Furthermore, existing numerical simulationsccupation ofAB sites is forbidden. These assumptions are
performed inD =2 dimensions withd¢=2 are in excellent pased on the dissociative chemisorption of diatomic mol-
agreement with Eqg22) and (23) [note that for these con- ecules (Q, H,, N,, etc) on binary catalysts. It is well
ditions it follows straightforwardly from Eq(23) thatv=1  known that in the absence of dimer's diffusion there is a
exactlyl. (i) Nakamura[15] has reportedv;=1 (RSA of  jammed staté19], so that the relevant quantity is the jam-
square blocKs (i) Vandewalleet al. [8] have reportedv, ming coveraged;. In the case of homogeneoud € 1) lat-
=1.0=0.1 (RSA of needles and(iii) Kondrat and Pekalski tice one has the exact resélf=1—e 2=0.864 664 72Ref.

[9] have reported’;=1.00+0.05 (RSA of segmenis [6]). Also, in the homogeneoudD(=2) lattice one ha¥,

In addition to these promising results, we will provide ~0.906(Ref.[6]). For the present case of a BA, one expects
more stringent tests of the validity of Eq3) performing  the coverage to depend on the temperature at which the sub-
numerical simulations of the RSA of dimers on homoge-strate has been annealed. Also, it should sardé;ﬁ?)i 65,
neous substrates o= 1,2 dimensions as well as using frac- due to the additional constraint that dimmers can only be

14

tal substrates. adsorbed on specific pairs of sites of the lattice.
RSA of dimers on fractal surfacédle have also studied
I1l. DETAILS ON THE NUMERICAL SIMULATION OF the RSA of dimers on stochastic fractals such as the diffusion
RSA OF DIMERS front [11,12 and Ising cluster§l7]. It is important to stress

that these chosen fractals satisfy the required property of
invariance due to their stochastic nature, so that E2{@)
and(23) are expected to hold.

Considering a BA a =T, the greatest cluster made up
taking NN sites occupied by the same species is selected for
different lattice sizes. This kind of substrate, called spin clus-
ters of the Ising mode(SCIM), are fractals with a fractal
dimension given by

RSA of dimers on binary alloy3he first set of simula-
tions are performed for the RSA of dimeithe RSA system
being the adsorbed atojnsn a binary alloy(BA) annealed
at a given temperaturgsubstrate systemThe BA is simu-
lated using the isomorphism with the Ising modél7],
namely, spin-up=A species and spin dowa B species. The
square lattice of sidé in D=1,2 dimensions with nearest-
neighbor(NN) interactions will be considered. The sitdef
each lattice is measured in lattice unital.). The BA is in
contact with a thermal bath at temperatdteThe system is d=D- /_3 (25)
assumed to obey Kawasaki dynamjds], so that the den- ’
sity of speciesA andB is conserved withpp,=pg=1/2. The

HamiltonianH is given by whereD is the Euclidean dimensioi§ and v are the order-
parameter and the correlation-length critical exponents, re-
H= Eo—3<2> sis;. (24) spleé:/t;vely. ForD=2 one hasB=% and v=1, so thatd;
I,] = .

In order to simulate the RSA of dimers on SCIM’s, a site
where Ep=N(eant egpt2€ap), J=—(1/4)(eaptegg  Of the cluster is selected at random. If that site is empty, a
—2€pp), €xy IS the interaction energy betwe&nandY spe- NN site is also selected at random. The adsorption trial is
cies, ands;= =1 indicatesA,B sites so that;s;=0 [18].  successful only if that second selected site is also empty,
The Monte Carlo time stepMCS) involvesLP trials, such  otherwise if that site is either occupied or lies outside the
that each species of the sample is selected once on avera@@ctal, the trial is disregarded. Therefore, double occupation
Stationary configurations of the BA are obtained after disreof sites belonging to the fractal is forbidden.
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RSA along the perimeter of SCIM’s has also been studied. AR AL T ]
For this purpose, only adsorption events of dimers taking - o T=0 v=2.000.01 7
place on two NN sites, such that one of them belongs to the 8 1/T=0 v=2.01+0.01
cluster and the remaining one is outside it, are considered.

Another type of stochastic fractal used for RSA simula- RSA!
tions is that generated by a diffusion front. In fact, it is well 107
known that the properties of the diffusion frot1—25 are
closely related to those of the incipient percolation cluster
[11-13. The front is a(stochasti¢ self-similar fractal of
dimension[20] d?F=10/7~1.428 57[21-23.

In order to obtain diffusion fronts suitable for RSA of
dimers, we have simulated the diffusion of particles at ran- -
dom. Hard-core interactions, orle= 2 square lattice of size

L XL, have been considered. There is a source of particles & Sl i L
the first row of the latticey=1,1<x=<L kept at concentra- 10 10° 10° 10
tion p(y)=1. Also, at the last roy=L,1<x=<L, there is a L

well such thatp(L)=0. So, there is a concentration gradient ]
along the source-well direction, while along the perpendicu- F!G- 1. Log-log plots oforss vs L obtained the case of RSA

lar x direction periodic boundary conditions are imposed. As2" BAS in one dimension=1). BAS at two different tempera-

: : e tures,T=0 andT=co, are considered as shown in the figure. No-
the concentratio of particles depends on the position, ;= > S . . -
P(Y) P P b ce that the lattice side andT are measured in l.u. and in units of

decreasing from the source to the well, one actually has .
gradient percolation system. The structure of the diffusion™ respectively.
front is identical to the structure of the hull of the incipient , .
percolation clustef21,26). Furthermore, the concentration of PIOtS Of o(rs4 Vs L. The best fits of the data give=2.00
particles at the mean front positiofy is the same as the +0.01 andv=2.01£0.01 for the case§=0 and T=<,
percolation thresholg., so thatp(y;) = p. [21,27. respgcyvely. Both figures are in excellent agreement with the
Considering that particles are connected to their firsPPrediction of Eq.(23) for D=d;=1, namely,r=2.
neighbors while empty sites are connected to both their first The second example considered corresponds to RSAon a
and second neighbors, the system can conveniently be dB-=2 BA with NN attractive interactions between alike spe-
scribed by means of the following geographical analogy. Th&i€s, i.€., the ferromagnetic version of the Ising model with
land is the set of particles connected to the source and the ségnserved order parameter. In this case one can also test the
is the set of connected empty sites not surrounded by land@lidity of Eq. (11) by measuring all the involved terms ac-
Also, an island is formed by groups of particles not con-cording to Eqgs.(6), (8), and (10), respectively. Figure 2
nected with the land, while lakes are formed by connecteghows log-log plots otr, versusyo{s,y + ojrss Obtained
empty sites surrounded by land. Finally, the seashore is thi®r the case of RSA of dimers on two-dimensional BASs.
part of the land in contact with the sea that can be identifiedata were taken at different temperatures and using lattices
with the diffusion front, which is a self-similar fractal.
RSA of dimers on diffusion fronts has been simulated ¢ T T T
using two rules: Rule | is that used for the case of RSA on
the SCIM perimeter(see above while using Rule Il one
only allows the adsorption on sites of the diffusion front,
disregarding adsorption trials on already occupied sites ol 107 =
the front and sites outside the fractal. .
(8
e

IV. SIMULATION RESULTS AND DISCUSSION 0k |

RSA of dimers on binary alloy$he simplest test for Eq.
(23) corresponds to the cafe=d;=1. Since for BA we are
only allowing deposition on unlike sites, this example can be
realized taking a one-dimensional BA with nearest-neighbor 10 =
repulsion between unlike specidantiferromagnetic Ising
system. In fact, considering the ground stateTat 0, cor- ' '_3 '
responding to a fully ordered sample, one has that the BA is 10 10 10
irrelevant and the system is equivalent to the standard RS/ (GZ{RSA} + Gz{s..b}) 12
of dimers inD=1. On the other hand, fof >0 one has
disordered samples with an homogeneous distribution of FiG. 2. Log-log plots ofs, vs \/m, as suggested
blocked sites, i.e.AA and BB sites where dimers are not py Eq.(11). The different terms involved in Eg11) were obtained
adsorbed. Particularly, ai=c one has a fully disordered according to Eqs(6) and(8) (horizontal axi$ and Eq.(10) (vertical
substrate. The obtained results are shown in Fig. 1 as log-logxis), respectively. The straight line has a slope of unity.

-2 -1

10
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hinder the evaluation of the actual exponents. If this is the

T=0.5

L ]
107E y s . case, the exponents 2t3.;;<1 may be considered as ef-
i 4 T2 3 fective size-dependent exponents.
LS 1 In order to further support the above discussed interpreta-
o =29 tion of the evaluated values of the exponentnumerical

simulations using samples having controlled interface rough-
ness and concentration of impurities have been performed.
| The starting substrate is a ground state of the BA Q) in
_ D=2. The half-left(-right) side of the sample is filled with
] A (B) species, so that a perfectly flat interfaceAd® species
] runs along the middle of the sample. Since RSA on this
SRR I substrate has zero rms, the original interface is modified in-
10°E T e troducing kinklike defects with probabilitg, . The resulting
interface where the RSA process actually occurs is homoge-
neous with fractal dimensioti; =1, so that according to Eq.
FIG. 3. Log-log plots ofrirsy Vs L obtained at different tem-  (23) one should expect an exponent 2/3. This prediction
peratures performing in each case500 andM =500 measure- IS again in excellent agreement with the numerical results
ments. The inset shows the temperature dependence of the exponetitained takingp,=0.005, 0.05, 0.3, and 0.5, as shown in
v. Notice that the lattice side and T are measured in lL.u. and in  Fig. 4(a). Of course, forp,=0.005 and small latticesL(
units of J, respectively. <100), finite-size effects are observed due to the finite prob-
ability of having a perfectly flat interface without fluctua-
of different sizes. The excellent straight line obtained, corretions.
sponding to 150 independent measurements, strongly sup- In addition to the test described previously, samples with
ports the validity of Eq(11). a fixed interface roughnesgy=0.3) in the example shown
Also, Fig. 3 shows plots afrs s versusL for the RSAof  in Fig. 4b) were decorated with a controlled densigy X of
dimers on BAs obtained at different temperatures. It is foundmpurities uniformly distributed in the bulk of the domains.
that the power-law decay predicted by E22) always holds  Figure 4b) shows that the presence of impurities not only
allowing us to determine the exponentsAt low tempera-  causes the fluctuations to increase but alsel for large
tures, belowT ;, one has that the BA segregates into domains,g|yes ofp,, as expected fob =2 andd;=2 according to
of alike species containing a certain density of unlike speciegq_ (23). The valuer=0.70+=0.03 obtained fom,=1/8 is
(impurities trapped into the bulk, which increases when the, oy cjose to the figure=2/3 corresponding tp, =0 since
temperature is raised. Since dimer adsorption on the bulk oé majority of isolated and small clusters of impurities can

Lhei/gobrgglnfn:sogzgpgfsvlglre %\J/S t?rr:h:r:ti?g;p:lhoen erélz tr;ﬁ’ﬁ_either significantly influence the fluctuations nor the expo-
) P ’ ery P P'%ent. In fact, only more complex clusters of impurities, as
cess is essentially restricted to the interface between d

mains. In this case one has=1 and Eq.(23) predictsv %os.e formed fop, =1/3 andp, =2/3 in the example shown
=2/3, in excellent agreement with the results obtained fittin n Flg. 4@’ allow for allarge variety of adsorption conflgg-
the curves, as shown in the inset of Fig. 3. Increasing th ations with an appreciable enhanceme.nt of the fluctuations
temperature and particularly close Tg, the density of im- of the RSA process that causes a noticeable effect on the

purities located into the bulk of the domains increases. Con€XPonent. _

sequently, an increasing number of pairs of sites becomes RSA of dimers on fractal surfacesigure 5 shows log-log
available for the RSA of dimers. However, not all these sitedlots of oirss versusL obtained upon RSA of dimers on
contribute to the fluctuations of the jamming coverage. TheSCIM's. In this example one hd3=2 andd;=15/8, so that
simplest example is the case of a single impurity surroundethe valuer=16/17=0.941176 is expected according to Eq.
by unlike species where only one dimer, with four possible(23). The results obtained fitting the data corresponding to
orientations, can be adsorbed. Therefore, fluctuations of thRSA on the bulk of the cluster and on its perimeter are
jamming coverage are only relevant when adsorption takes-0.941+0.007 andv=0.93+0.02, respectively. In the lat-
place in rather complex arrangements of impurities that aréer case for small latticed < 60), finite-size effects are ob-
present in the domains close Tq. For these reasons one served as in the analogous percolation probld3). Also,
observes a smooth increasewoWhen approaching the criti- Fig. 5 shows the results for the RSA of dimers on a diffusion
cal point from below, as shown in the inset of Fig. 3. Finally, front in D=2. This is an interesting example to test the
for T=T. one has that adsorption sites, given by nearestvalidity of Eq. (23) using a stochastic fractal with a well-
neighbor pairs of unlike species, are homogeneously distribknown fractal dimensiou;=10/7. For this example one ex-
uted on the sample witb =2 andd;=2. For this case, Eq. pectsy=0.777 ..., while the best fit of the numerical data
(23) predictsy=1 in excellent agreement with the numerical shown in Fig. 5 givesv=0.77-0.01, using two different
results shown in the inset of Fig. 3. It should be noted thatdsorption rules as discussed above. These results are also in
the smooth variation o¥, observed in the inset of Fig. 3 excellent agreement with EG23), giving further numerical
when approaching ., may be due to finite-size effects that support to the analytical relationship derived in Sec. Il.
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107 7 o DFRulel,  v=077 £0.01
A v  DFRulell, v=0.77 £001
o SCIMBulk,  v=0.941£0.007
a  SCIM Perimeter, v=0.93 +0.02
107 s
{RSA} [
4 Otrsay
0 .
o 0=0.67 + 0.02
E o p,=0.050 v=0.68 £ 0.01
E v p,=0300 v=0.67:£0.01
[ a4 p=0.500 v=0.665 0.005 ]
10°= ol = 1075 ‘2 s
10" 10% 10 11(3 10
FIG. 5. Log-log plots oforss Vs L for the case of RSA on
T T T T A T random fractalsl{ is measured in I.).. Considering spin clusters of
1072 - the Ising model(SCIM) at T, it is found that Eq.(23) is valid
(b) when the RSA process is done on both the bulk and the perimeter
cluster. Also, results obtained upon RSA on the fractal generated by
L J diffusion fronts(DF) with two different adsorption rules are shown.
g E For details on the SCIM and the adsorption rules, see the text.
Owsay [ ] _ _ .
» alloy and according to the adsorption rules, one hasahat
10 essentially a measure of the densityAd sites present in the
configuration. Furthermore, such paimhich are known as
the “broken bonds” in Ising spin languageontribute to the
E o p=03 p,=1/8 v=0.70 £ 0.03 internal energy per site of the BAuf. Applying the
E o p,=03 p,=1/3 v=0.87£0.02 3 fluctuation-dissipation theorerf28] it is possible to show
L & p,=0.3 p,=2/3 v=098£0.01 . that the specific heat of the BAC\,=(du/dT)y/] is given by
10°E Ll Ll L the fluctuations ofi, namely,
10" 10° 10°
L L2 & (u—(u)? L2,
: : Cv==5 2, ——=—= 0%, (26)
FIG. 4. Log-log plots ofrrss Vs L obtained for a simple one- 251 M-1 T2

dimensional interfacial model embedded in a two-dimensional lat-
tice (L is measured in L0 The parametep, allows us to choose \vhere averages are taken over the{ggt of different con-

between different interface roughnesses, whileaccounts for the  figurations of the BA. On the other hand, for the=2 Ising
density of two-dimensional defects in the bulk. For additional de- model, one has that

tails on the model, see the texa) Data corresponding te,=0 and

dlfferent valueg of the roughness_ as I|§ted in the flg(tn)a_Data CV(T)O<|T—TC|“, (27)
obtained keeping the roughnepgs=0.3 fixed and using different
values ofp,, as listed in the figure. with «=0, i.e., a logarithmic divergence at criticality.

Interplay between fluctuations of correlated stochashcAnalogOUSly’ one can define an RSA "susceptibilityfor

processeslt should be stressed that in order to capture the the jammed state as

physics of the RSA process, all the fluctuations measured in (0 <9 >)2

the previous sections were evaluated with the aid of ER)s. 2 J J 2,2 (28)

and(9). The aim of this section is to show that a quite dif- =1 {Sub»

ferent physical picture can be obtained measuring the fluc-

tuations linked with the substrate system. Let us recall thatwvhere it is expected that, if the system conformed by the

for this purpose one also has to perform RSA measurementdgposited particles would follovior “copy” ), in some way,

however, fluctuations have to be evaluated using @®g. the structure of the underlying substratewould follow the

which (within the context of the present workaptures the same behavior as that @, .

physics of the underlying substrate where the RSA process Figure 6 shows that plots of versusT, obtained using

takes place. lattices of different sizes, exhibit clear peaks close to the
As an example, the discussion will be restricted to thecritical temperature of the underlying BA, resembling the

case of RSA of dimers on a BAiD=2, in order to perform  behavior of the specific heat in finite samples. In fact, the

comparisons with the data obtained in the simulations showpeaks are shifted and rounded due to operation of finite-size

in Figs. 2 and 3. Considering a single configuration of theeffects. This behavior is the typical one for a second-order

041106-7
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FIG. 6. Plots ofy vs T obtained for the RSA of dimers on BA 1-
using lattices of different sizds (T is measured in units af while r S e o
L is given in l.u). The data exhibit the typical behavior character- 0 . voviule 4B dioom,
istic of a second-order phase transition. 0.01 0.10 1.00
|T-TC|
phase transition that implies the existence of a diverging cor- _ _
relation lengthé when approaching criticality accordirfig7] FIG. 7. Data corresponding to the RSA of dimers on BA®.
to Linear-log plot ofymax VS L, wherelL is measured in |.ub) Linear-
log plot of y vs |T—T¢| (whereT is measured in units of) ob-
§(T)0<|T—TC|’V*, (29)  tained using lattices of size =256 l.u. Both plots show thay

reflects the divergences of the specified heat of the underlying BA.
wherev* =1 is the correlation-length exponent of the Ising
model. Using finite-size scaling arguments one can sentensity of the RSA fluctuations as compared to those of the
L1/V*|T_-|-C|%1 [17], then replacing into Eq(27) with a substrate. Then, using EqR2), (28), and (30), it follows
=0, and assuming that close to criticality one kasC, , it that

follows 1/
- v

L=4In(L)

where xmax IS the maximum value o which can be ob- ) o
tained from the peaks shown in Fig. 6. The results shown ifvhere thel-dependence behavior @f* appears explicitly
Figs. @@ and 7b) confirm the divergences of expected through the functiorf(L), while #(T) accounts for the tem-
according to Eqs(27) and(30), respectively. So, this finding Perature dependence. Figure 8 shows that log-linear plots of
shows that there is an additionaédlivergen} correlation
length of the RSA process that is associated to the substrats Lo
and it can be captured by measurigg

From Figs. 3, 6, and 7, as well as according to the above 25.0
discussion, it follows that the RSA of dimers on BA's pro-
vides an interesting example of the interplay between twog
correlated processes whose respective fluctuations obey dit 5.0
ferent functions. It is worth mentioning that, in spite of ex-
hibiting quite different behavior, both functions capture the

Xmax(L)In(L), (30) ¢*=p(T)F(L)=a(T) (31)

]
|
]
]
1
]
|
1

[ILLRALLN N I R L L B IR L Ihlhll

criticality of the substrate. In fact, the fluctuations of the 1.0 vV L=64 ©

jammed state, as measured according to Egjsand (28), 2 kjﬁﬁ

reflect the critical behavior of the BA through the relation- o L=512

ship betweeny andC, while, on the other hand, using Egs. 0.2F

(8) and(9) the criticality of the BA becomes evident through L '

the jump of the exponent observed close td, (see Fig. 3. = ' L . ' L '

It is also interesting to remark that the relationship that re- 1 2 3
lates the different fluctuations of both processes, given by T

Eq. (11), does not show such a critical behavior at all, as  F|G. 8. Plot of¢ vs T (T is measured in units of), obtained
shown in Fig. 2. using lattices of different sizels, measured in l.u. The jump ob-

In order to further analyze these results, let us defffie  served in¢ occurs atT (dashed ling The solid lines have been
=0rsp/0(suy , SUCh asp™ gives a measure of the relative drawn to guide the eyes.
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¢(T)=¢*/f(L) versusT exhibit an acceptable collapsing. given byv;=2/(2D —ds), D andd; being the dimensions of
At both sides ofT - the function¢(T) approximately follows the lattice and that of the active sites where adsorption actu-
a logarithmic behavior, resembling the temperature deperally takes place, respectively. These results are suitable to
dence ofy nearT.. Moreover, a clear jump appears, describe systems characterized by a short-range correlation
due to the change in the fractal dimension of the adsorbin¢ength of the RSA process that may take place on both ho-
set of sites of the substratel{=1 for T<T. andd;=2 for = mogeneous and nonhomogeneous substrates. From our deri-
T=T,.) observed in the finite samples used in the simulavation of Eq.(23), it follows that v;=1 for D=2 andds
tions. This result implies that the temperature dependence &f 2, in accordance with results published previously by vari-
the structure of the substrate prevails over that of the RSA&us author$8,9,15.
process, and that the fluctuations due to substrate also prevail It should also be noted that E@®3) allows us to measure
over those due to the RSA procdsete thatf(L)—0 when the fractal dimension of the different adsorption sets where
L—oo]. deposition takes place according to the specified adsorption
rules. Summing up, our results not only point out that a
V. CONCLUSIONS careful treatment of the fluctuations of correlated processes is
necessary in order to capture the desired physical behavior,
In this paper the behavior of the fluctuations of the jam-pyt also provide a tool for the evaluation of fractal dimen-
ming coverage upon RSA process on homogeneous and nogipns using RSA experiments.
homogeneous substrates has been studied. Pointing the atten-
tion to t_he RSA process and applying the definition given by ACKNOWLEDGMENTS
Eq. (8) in order to measure the fluctuations, we have shown
both analytically and by means of numerical simulations that This work was supported by the CONICET, the UNLP,
the jamming fluctuations behave a§JocL‘1”’J, wherev;is  and the ANPCyT(Argenting.
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